The Health Impacts of Cold Homes and Fuel Poverty

Marmot Review Team
The Health Impacts of Cold Homes and Fuel Poverty

Written by the Marmot Review Team for Friends of the Earth
I am delighted that Friends of the Earth have commissioned us to write this report. Fuel poverty is a long-standing health issue: the impact of cold housing on health and the stresses brought on by living in fuel poverty have been recognised for decades by researchers, medical professionals and policy makers alike. At the same time, it is an issue that often gets dismissed as the ‘tough nature of things’ because our housing stock is old and cold housing is so widespread that many have come to regard it as a normal state of affairs.

It should not be so. Cold housing and fuel poverty can be successfully tackled through policies and interventions if there is a will to do so. There is a social gradient in fuel poverty: the lower your income the more likely you are to be at risk of fuel poverty. I have always said that inequalities that are avoidable are fundamentally unfair - fuel poverty is avoidable and it contributes to social and health inequalities.

When we published Fair Society, Healthy Lives, one of our recommendations was to “improve the energy efficiency of housing across the social gradient” in order to achieve affordable warmth and a reduction in energy usage as well as fuel poverty. We advocated aligning the agendas of climate change and health inequalities by exploiting low carbon solutions, based on the principles of sustainable development. We do so again in this report: improving the energy efficiency of the housing stock brings multiple health and environmental gains.

Building on the evidence presented in the Review of Health Inequalities, this report brings new light to the issue of cold housing and fuel poverty; it highlights not only the variety of health outcomes that are caused and aggravated by cold housing, but also how children, the elderly and the vulnerable are greatly affected by fuel poverty.

Public health must address the social determinants of health: this report comes at a crucial time in policy making for public health as the White Paper is setting the new framework for reducing health inequalities. The proposed outcomes framework includes five domains, among these is the wider determinants of health, and I am so pleased that one of the indicators under this heading is fuel poverty – it initiates the momentum for a renewed effort to tackle such an important factor and it provides a drive to addressing this issue at both the national and local level.

Professor Sir Michael Marmot
Department of Epidemiology and Public Health
UCL
Acknowledgements

Report writing team
Ilaria Geddes
Ellen Bloomer
Jessica Allen
Peter Goldblatt
at Department of Epidemiology and Public Health, UCL

Table of Contents

5 Foreword
6 Acknowledgements
7 Table of Contents
9 Executive Summary
11 Chapter 1
 Introduction
13 Chapter 2
 The policy context
17 Chapter 3
 Climate change and health
19 Chapter 4
 Fuel Poverty and Energy Efficiency
 21 Rural Homes
23 Chapter 5
 Direct health impacts of living in a cold home
 23 5.1 Mortality: Excess Winter Deaths
 25 The number of excess winter deaths attributable to cold housing
 25 International comparisons
 26 5.2 Morbidity: Health Conditions
 27 Circulatory diseases
 28 Respiratory problems
 29 Mental health
 29 Other conditions
31 Chapter 6
 Indirect health impacts of living in a cold home
 32 6.1 Social benefits of improved housing
33 Chapter 7
 Conclusions
 34 Ensuring effectiveness of interventions
 35 7.1 Policy Recommendations
37 Appendix
39 Endnotes
40 References
This report reviews the existing evidence of the direct and indirect health impacts suffered by those living in fuel poverty and cold housing. It makes the case for aligning the environmental and health agendas and reviews the evidence on the health benefits of reducing fuel poverty and improving the thermal efficiency of the existing housing stock.

The main findings on the direct health impacts of cold housing and fuel poverty are:

- Countries which have more energy efficient housing have lower Excess Winter Deaths (EWDs).
- There is a relationship between EWDs, low thermal efficiency of housing and low indoor temperature.
- EWDs are almost three times higher in the coldest quarter of housing than in the warmest quarter (21.5% of all EWDs are attributable to the coldest quarter of housing, because of it being colder than other housing).
- Around 40% of EWDs are attributable to cardiovascular diseases.
- Around 33% of EWDs are attributable to respiratory diseases.
- There is a strong relationship between cold temperatures and cardio-vascular and respiratory diseases.
- Children living in cold homes are more than twice as likely to suffer from a variety of respiratory problems than children living in warm homes.
- Mental health is negatively affected by fuel poverty and cold housing for any age group.
- More than 1 in 4 adolescents living in cold housing are at risk of multiple mental health problems compared to 1 in 20 adolescents who have always lived in warm housing.
- Cold housing increases the level of minor illnesses such as colds and flu and exacerbates existing conditions such as arthritis and rheumatism.

The main findings on the indirect health impacts of cold housing and fuel poverty are:

- Cold housing negatively affects children’s educational attainment, emotional well-being and resilience.
- Fuel poverty negatively affects dietary opportunities and choices.
- Cold housing negatively affects dexterity and increases the risk of accidents and injuries in the home.
- Investing in the energy efficiency of housing can help stimulate the labour market and economy, as well as creating opportunities for skilling up the construction workforce.

Many different population groups are affected by fuel poverty and cold housing, with various levels of health impacts relating to different groups:

Children
Significant negative effects of cold housing are evident in terms of infants’ weight gain, hospital admission rates, developmental status, and the severity and frequency of asthmatic symptoms.

Adolescents
There are clear negative effects of cold housing and fuel poverty on the mental health of adolescents.

Adults
There are measurable effects of cold housing on adults’ physical health, well-being and self-assessed general health, in particular for vulnerable adults and those with existing health conditions.

Older people
Effects of cold housing were evident in terms of higher mortality risk, physical health and mental health.

Improving the energy efficiency of the existing stock is a long-term, sustainable way of ensuring multiple gains, including environmental, health and social gains.

Government policy documents and reports, including the Chief Medical Officer report of 2009 and the recent Public Health White Paper, recognise the tangible impact of cold housing and fuel poverty on people’s health and well-being.
Government policies, actions and financial support for interventions aimed at reducing fuel poverty and improving the energy efficiency of existing stock need to match its stated commitment to both the public health and climate change agendas.

The Government’s current support and financial commitment to addressing the problem of poor thermal efficiency of housing remains inadequate, given the potential it has to improve the health and well-being of the population and help mitigate climate change.

A renewed effort is needed to support programmes and policies which have shown to be successful in increasing energy efficiency of homes and improving the health of their residents, such as the Warm Front Programme, and in encouraging local government action in addressing fuel poverty, such as the National Indicator 187 – Tackling Fuel Poverty.

Living in cold conditions is a risk to health. The aim of this report is to review the existing evidence of the direct and indirect health impacts suffered by those living in fuel poverty and cold housing. Many such households will be living in homes that have poor thermal efficiency and are therefore hard or expensive to heat, as well as accounting for a significant share of CO₂ emissions from the housing stock (1), thus negatively contributing to climate change.

In 2008, 18% of households in the UK were estimated to be living in fuel poverty (2). Fuel poor households must choose either to spend more than 10% of their income on heating, which has a detrimental impact on other aspects of health and well-being, or to under-consume energy and live in a cold home to save money. Deprived and vulnerable households – especially those who do not have access to social housing - are more likely to live in energy inefficient housing, and less likely to have the resources or the resilience to deal with the negative impacts of cold homes and reduced income.

The World Health Organisation (WHO) recommends that indoor temperatures are maintained at 21 degrees in living rooms and 18 degrees in bedrooms for at least 9 hours a day.

Fuel poverty is defined as having to spend 10% or more of a household’s net income to heat their home to an adequate standard of warmth (3). Over the years this definition has been accepted by various Government departments with responsibility for fuel poverty. However, there has been disagreement about what constitutes a household’s income: the Government’s definition includes housing benefit, council tax benefit, income support, and mortgage payment protection insurance, although many estimates are calculated with a formula that excludes housing subsidy.

Improving the energy efficiency of the housing stock is an essential step to reduce the number of households in fuel poverty, mitigate climate change and bring associated health benefits. Poverty more widely affects health, but fuel poverty should be considered distinctly because:

— Not all who are income poor are also fuel poor.
— Factors other than income poverty can be tackled to reduce fuel poverty.
— Although their causes are inter-related, the effects of fuel poverty are distinct from the effects of income poverty. They relate to specific health conditions rather than health as a whole and negative health outcomes are more immediate than the outcomes caused by income poverty.
— Fuel poverty is more amenable to change than income poverty.

This report makes the case for aligning health and environmental agendas, and reviews the evidence on the health benefits of reducing fuel poverty and improving the thermal efficiency of the existing housing stock.

Excess winter deaths (EWDs) and health conditions attributable to cold housing will be described and assessed based on existing evidence. The primary and secondary benefits of improvements in energy efficiency will be examined. Further, the report reviews the evidence on the proportion of households in fuel poverty affected by different health conditions and estimates the proportion of EWDs attributable to cold homes. The report also analyses the relationship between energy rating and the predicted health improvement which could be obtained through increased energy efficiency of housing stock.

We could prevent many of the yearly excess winter deaths – 35,000 in 2008/09 – through warmer housing... [Public Health White Paper, 2010]
There are three possible ways to move the majority of the population out of fuel poverty: one is to increase income (the Winter Fuel Payment is an example), a second is to regulate fuel pricing and third is to improve energy efficiency of homes. Reducing fuel poverty exclusively through financial support is dependent on the economic situation, energy prices, and political will. Further, it will not tackle CO₂ emissions as it allows people to use more energy to reach a comfortable level of heating thereby increasing carbon emissions. On the other hand, making homes more energy efficient is a long-term, sustainable solution, which will allow people to use less energy to heat their homes adequately with a positive impact on carbon emissions.

The EU policy directive 2010/31/EU on the energy performance of buildings of 19 May 2010 (EPBD) requires member states to set requirements for the energy performance of new buildings (4). When undergoing major renovation, the energy performance of the building or the renovated part should be upgraded to satisfy current minimum requirements. Building elements that form part of the building envelope and have a significant impact on the energy performance of that envelope (for example, window frames) should also meet the minimum energy performance requirements when they are replaced or retrofitted. The directive also requires member states to develop a common methodology for calculating the energy performance of buildings, which has to be implemented by July 2013 and will have an impact on current methods used for Energy Performance Certificates (EPCs).

Only since the Code for Sustainable Homes (5) was introduced in 2007 have English energy standards for new buildings approached levels similar to those of other Northern European standards. The strict targets imposed by the Code make it extremely unlikely that anyone living in properties built according to its standards will fall into fuel poverty: it has initiated the most significant change in the thermal efficiency of the housing stock. However, the proportion of homes built since its introduction is minimal in comparison to stock built prior to 2007, which houses most of the population.

In 2000 the UK Government set out the Decent Homes Standard. This is a measure by which the quality of homes is rated, and includes statutory minimum standards for housing as well as thermal comfort – encompassing both efficient heating and insulation. Regulations aimed to ensure that all social housing met standards of decency by 2010, and the target was extended to include a minimum of 70% of private dwellings occupied by vulnerable households also meeting the standard. These targets have not been achieved: it was estimated that 3.8% of Registered Social Landlord (RSL) properties and 12%-14% of council properties would be non-decent as of the end of 2010 (6) and a renewed policy effort, coupled with better levers and incentives is needed in order to reach such targets. Improving standards and energy efficiency of properties in the private rental sector has proven particularly difficult as private landlords are only required to upgrade homes in line with health and safety regulations rather than any thermal efficiency standards.

Case study: The Housing Health and Safety Rating System (HHSRS)

The HHSRS system came into effect on 6 April 2006 and replaced the fitness standard as the statutory element of the Decent Homes Standard. However, HHSRS is a risk assessment procedure and does not set a standard. It measures the risks within the home against a series of hazards which range from indoor pollution to hygiene to structural safety and also include:

— Excessive Cold Temperature: Hazards arising from consistently low indoor temperatures.
— Damp and Mould Growth etc: Includes risks from house dust mites, mould and fungal spores.

It has been identified that the majority of failures in achieving a certain rating relate to the inadequate thermal efficiency of housing.

For further information visit: http://www.communities.gov.uk/publications/housing/hhssrsoperatingguidance
Even when health and safety regulations are contra-
vened, private tenants may not exercise their right to
address the problem because they fear eviction, from
which they are not protected under UK law. It has
often been reported that landlords take advantage of
government departments as well as private partners.
These provided the communities with information
and funding to reduce their CO2 emissions and
benefits. However, the previous review of Gas
House model. Their research concluded
that a model of local area partnerships that linked
housing, heating and fuel poverty services was the most
effective approach for directing services to the vul-
erable. The CCH model identified the key systems
and processes necessary to access the vulnerable
fuel poor, identify high risk groups, streamline
referral and delivery systems and implement moni-
toring and evaluation processes.

The CCH model was piloted in Manchester, with
the implementation of the Affordable Warmth
Access Referral Mechanism (AWARM). Funded by
the Department of Health, the pilot was a part-
nership with Sal福德 City Council and Primary
Care Trust.

Greater Manchester invested approximately
£100,000 each year into AWARM. Since April
2008 AWARM activity resulted in over £600,000
of investment in new and replacement central
heating systems and insulation. During the last
year of the project over 1000 referrals were made

Case study: Working in partnership to reduce fuel poverty

The programme originates from the UK Public
Health Association (UKPHA) Health Housing and
Fuel Poverty Forum, funded by Defra. The
Forum, made up of national figures from the health,
housing and energy sectors, and practitioners from
across England, developed the Gas
House' model. Their research concluded
to targeting the population suffering from cold housing
and fuel poverty through the development of a part-
nership between PCTs and Local Authorities – this
project is described in the case study box below.

Although the CESP is likely to benefit a number
of low-income households, at present there is no
open programme aiming to reduce fuel poverty by
targeting people on low incomes. There is a risk
that households on higher incomes and in better
quality homes living in low income areas will benefit
more from this programme, rather than those who
are most in need. Additionally, many low-income
households live in areas outside the designated areas
of deprivation. They will be missed by a programme
targeting low-income areas rather than low-income
households.

At the time of this report's publication, the
Energy Bill is passing through Parliament. This
seeks provision for merging the CERT and CESP
programmes, which are running through to 2012,
into the Energy Company Obligation (ECO). It
sets out the Green Deal framework to enable provi-
sion of improvements to the energy efficiency of
domestic, as well as non-domestic properties, which
would be financed by the private sector and repaid
by a charge on energy bills. The bill sets out powers
for the Secretary of State to introduce initiatives
on energy efficiency in the private rented sector no
earlier than 2015. These could prevent residential
landlords from refusing tenants' reasonable requests
for energy efficiency improvements and require
landlords to improve some of the least efficient
properties. However the use of powers is dependent
on the outcome of a review and other strict conditions.

National Government also provides financial
support to cope with energy bills through the Winter
Fuel Payment – a yearly one-off payment for all
those who have reached pension age. This is supple-
mented by the cold weather payment during periods
of extreme cold weather for households in receipt
of a fixed amount of income. For example, jobseeker's
allowance and support allowance and support
allowance. However, the efficacy of such schemes in
reaching the populations in need is contested, as shown Table 1.

Further, the Warm Homes Discount is a new manda-
tory scheme that requires energy suppliers to pro-
vide certain benefits such as pensioners will be
replaced the voluntary scheme of social tariffs previ-
ously provided by energy suppliers on an ad-hoc
basis in different areas and for different households.
The Feed-in Tariffs (FIT) and Renewable
Energy Incentive (RHI) aim to provide financial support
for those who install renewable energy systems which
qualify for support under the schemes. The schemes
are designed to support meeting the requirements
of the EU Renewable Energy Directive, which sets a
binding target of having 20% of the EU's energy
consumption coming from renewable sources. It is
expected that households and landlords will take
eftargeting the groups for whom other options
are the EU energy consumption coming from renewable sources. It is
expected that households and landlords will take
effort to improve energy efficiency are not viable or cost-
efficient, such as those in older rural housing or who
are not connected to the grid.

Local government action has been driven by
National Indicators 186 and 187, which monitor CO2

Table 1: Targeting efficiency of existing fuel poverty schemes

<table>
<thead>
<tr>
<th>Scheme name</th>
<th>Targeting efficiency</th>
<th>% of recipients that are fuel poor</th>
<th>% of fuel poor that are eligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Fuel Payments</td>
<td>39% (Boardman, 2010)</td>
<td>50% *</td>
<td></td>
</tr>
<tr>
<td>Warm Front</td>
<td>25% - 40% (NAO, 2009)</td>
<td>35% (NAO, 2009)</td>
<td></td>
</tr>
<tr>
<td>Home Energy Efficiency</td>
<td>30% (WAG, 2005)</td>
<td>54% (Boardman, 2010)</td>
<td></td>
</tr>
<tr>
<td>Councils (Wales)</td>
<td>20% (Boardman, 2010 and Lees, 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERT Priority Group (Includes people on passport benefits)</td>
<td>24% (Tandy, 2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown (Boardman, 2010)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scheme: Association for the Conservation of Energy (9)

All over 60s received WFPs, 50% of the fuel poor are estimated to be over 60 (Boardman, 2010)

Percentage of those on passport benefits (Boardman, 2010)

* All over 60s received WFPs, 50% of the fuel poor are estimated to be over 60 (Boardman, 2010)

Source: Association for the Conservation of Energy (9)

Further, the Warm Homes Discount is a new manda-
tory scheme that requires energy suppliers to pro-
vide certain benefits such as pensioners and
income support, jobseeker’s allowance and employment
and support allowance. However, the efficacy of
such schemes in reaching the populations in need
is contested, as shown Table 1.
emissions and levels of fuel poverty respectively at the local level, as well as by the requirements of the Home Energy Conservation Act (HECA), which placed an obligation on local authorities to draw up plans to increase domestic energy efficiency in their areas by 30% between 1995 and 2010. Some local authorities have been very pro-active in encouraging residents to access funding to reduce energy use and fuel poverty. These have been awarded Beacon status for best practice in tackling fuel poverty and have produced a toolkit for other local authorities to develop effective strategies to reduce fuel poverty taking account of local circumstances. However, further progress of local action on fuel poverty is likely to be hampered by the funding cuts to Local Government, the abolition of HECA and the fact that National Indicator 187 will become optional from 1 April 2011.

3 Climate change and health

Protecting and improving health, reducing health inequalities, and the mitigation of climate change have a shared agenda. Measures and policies intended to respond to climate change can help reduce health inequalities and vice versa (10). There is sufficient evidence to link the agendas and argue for concerted Government action to tackle fuel poverty and thereby improve quality of life and health, as well as reducing CO₂ emissions: climate change is predicted to result in an increase in deaths, disability and injury from extreme temperature and weather conditions, heat waves, floods and storms including health hazards from chemical and sewage pollution (11). Less direct long-term impacts include the effects on mental health of flooding and other climate-related events, which could cause anxiety and depression (12).

Domestic energy use is responsible for around a quarter of the UK’s CO₂ emissions. The greatest share of such emissions - over 70% - is through space and water heating (12). It is estimated that poor insulation means around £1 in every £4 currently spent heating UK homes is wasted. A third of CO₂ emissions from housing relate to domestic space heating and could be reduced through making the existing stock more energy efficient (13). Improving energy and fuel efficiency are the mechanisms to reduce fuel poverty and improve health and these efficiencies are also beneficial to the climate change agenda.

Those likely to be most vulnerable to the health impacts of climate change are those already deprived by their level of income, quality of homes, and their health (14) – the same groups more likely to live in fuel poverty. People on low incomes in the UK are more likely than the better-off to live in urban areas which will be worse hit by extreme weather events, and therefore to be at greater risk of heat stroke (15), such as during the heat wave of summer 2003. They are more likely to live in homes that are less well protected (15) and in areas that are more exposed to weather extremes and flooding (16). They are also less likely to have access to insurance against risks associated with climate change such as storm and flood damage (17). Improving the thermal performance of homes can help mitigate climate change, while protecting households from summer overheating as well as winter cold.

There is a strong relationship between the individual house and its immediate neighbourhood not just in terms of vulnerability to climate change, but also in terms of domestic energy use. How a neighbourhood is planned and designed can take more or less advantage of natural resources such as solar energy and green cover, which can also aid energy conservation as well as mitigating climate change. Consideration must be given to the wider environment when considering interventions to improve energy efficiency, reduce fuel poverty and mitigate climate change.
This section describes how fuel poverty is distributed across the population and how this relates to certain housing characteristics, including age of property, tenure and thermal efficiency.

As the graph below shows, the risk of fuel poverty rises sharply as household income falls – very few households with above-average incomes are in fuel poverty.

Other factors besides household income affect whether a household is in fuel poverty or not, such as housing costs and type of ownership. Barnes, Burt & Tomaszewski (19) used the Families & Children Survey to estimate that children in families with a black mother, a lone parent, or with a number of debts were twice as likely to experience persistent cold indoor temperatures than other children.

As a proportion of the total number of households for a given tenure (for example private rented, owner occupier or social housing) households living in private rented accommodation have a higher likelihood of living in fuel poverty – 19% of households in private rented were in fuel poverty compared with 11% in other tenures (20). There are various reasons for this: tenants in the private rental sector can be put off seeking help to improve the energy efficiency of their homes because they may not see it as worth the effort or investment if they plan to move, they may not know it is an option that they could take advantage of, subject to the agreement of the landlord, or they may even fear eviction if some cost or disruption might fall on the landlord. Financial incentives are also low for landlords, who are put off improving properties by the upfront costs while most financial benefits will be to the tenants through lower energy bills.

Despite policies such as Warm Front and the Winter Fuel Payment, the number of fuel poor households in England dramatically increased...
between 2004 and 2010 from 1.2 million to 4.6 million (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21). Much of the increase in fuel poverty in England and Wales (21.20). The winter of 2009/10 saw 25,400 deaths.Two of the many sustainable ways of tackling fuel poverty and limiting the impact of fuel price increases is to build energy efficient housing and retrofit the existing housing stock to an energy efficiency level that would make it extremely hard for people to fall into fuel poverty, as space heating accounts for the greatest share of energy use in homes – over 50% (12). This is known as ‘fuel poverty proofing’ and it has been estimated that raising all properties in England to SAP 81 (equivalent to Energy Performance Certificate band B) would lift 83% of households out of fuel poverty (22).

While new homes need to become highly energy efficient by 2020, in line with European directives, typical energy efficiency for the existing stock is much lower than current building regulations require. The Standard Assessment Procedure (SAP) is the Government’s approved mechanism for measuring home energy efficiency: it calculates a home’s typical annual energy costs for space and water heating as well as lighting. The SAP scale runs from 1 (lowest) to 100 (highest). Energy Performance Certificate (EPC) bands are based on the SAP scores, and run from G (lowest) to A (highest). Current building regulations require a SAP rating of between 65 and 81 as a base-line, ie. a level above EPC band D – more than 50% of the existing housing stock falls well below this standard, as shown in Table 2 below. F and G band homes have very low standards of energy efficiency. There is a broad correlation between these homes and those which constitute a category 1 hazard for excess cold, as defined in English and Welsh environmental health legislation. Damp and mould are more likely to occur in cold, poorly insulated homes, and thermal efficiency is strongly linked to the age of the property: on average properties that were built before the 1920s fall within the F and G categories and average indoor temperatures are lower the older the property, as shown in Table 3 below. F and G rated homes are characterised by a number of elements which mark them as poor in energy efficiency. The Energy Saving Trust (3) has highlighted that properties falling into these two categories tend to be:

- Large or medium sized, semi or detached houses, gas heated and double-glazed, but with an unfilled cavity wall, which are generally rated as F. These are estimated to be about a third of all properties falling in categories F or G.
- Properties which lack gas- or oil-fired heating system. These are estimated to be about half of F–G rated homes.
- Smaller homes (flats or terraces), which are electrically or oil-heated and are single glazed. These tend to fall in the G banding, but are estimated to be only a small number.
- Large, semi or detached houses, generally electric or oil-heated, with solid walls, either double or single glazed. The average SAP for single glazed homes of this type is under 20. These tend to be large and old rural homes.

Whether households living in such properties are in fuel poverty depends on the household’s income. A number of households living in large and older properties at the higher end of the housing market may not be in fuel poverty due to high incomes. However, the fact remains that households living in such properties are either in fuel poverty or at risk of quickly falling into fuel poverty if their family circumstances or income change. Moreover, such properties are detrimental to the environment as – in order to keep warm - the households residing in them are bound to emit more CO₂ than they would if their home’s efficiency was improved.

Rural Homes

Fuel poverty is a particularly concerning problem in rural areas, where it is estimated that half of homes in sparsely populated English communities have an energy efficiency rating of below SAP36, which is considered a significant health hazard. In 2006, 21% in rural areas were in fuel poverty compared with 11% in suburban and 10% in urban areas (24). Rural homes are likely to be detached and larger in size than urban homes (25), meaning that they are more difficult and more expensive to heat, or to make more energy efficient. Access to mains gas is rare in most areas more than about 5 or 10 miles from an urban area (25), meaning many rural homes must pay more for their fuel and a high percentage of them are in fuel poverty (The House of Commons Select Committee on Energy and Climate Change, March 2010, cited in (26)). They are heated by electric, oil or solid fuel, which tends to be more expensive and less efficient. Many rural homes are older buildings. They are more likely to have solid walls (almost all homes built before 1919 are solid walled), which are generally less well-insulated than cavity walls (as can be found in nearly all homes built after 1945) (25). While over 60% of homes in urban areas and rural towns are cavity walled and on mains gas, this is true of only 32% in villages and 21% in hamlets (25).

These factors mean that it is on average more difficult and more expensive to improve the energy efficiency of a rural home and need to be considered when developing policies and interventions aimed at reducing fuel poverty.

Table 2 Percentage of homes in England by EPC banding and SAP rating, 2008. Source: EST 2010 (1)

<table>
<thead>
<tr>
<th>EPC</th>
<th>SAP</th>
<th>% homes in England</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B</td>
<td>81+</td>
<td>3.0</td>
</tr>
<tr>
<td>C</td>
<td>54–65</td>
<td>35.4</td>
</tr>
<tr>
<td>D</td>
<td>39–54</td>
<td>13.4</td>
</tr>
<tr>
<td>E–G</td>
<td>21–38</td>
<td>3.5</td>
</tr>
<tr>
<td>G</td>
<td>1–20</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Percentage of homes in England by EPC banding and SAP rating, 2008. Source: EST 2010 (1)

Table 3 Indoor temperature by age of property (23)

<table>
<thead>
<tr>
<th>Ages of property</th>
<th>Number of dwellings</th>
<th>Mean measured temp (°C)</th>
<th>Temp under standard conditions</th>
<th>% of households with hail temp <16°C at standard conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre 1900</td>
<td>660</td>
<td>17.3</td>
<td>16.7</td>
<td>38.8</td>
</tr>
<tr>
<td>1900–44</td>
<td>1,157</td>
<td>17.5</td>
<td>16.8</td>
<td>36.0</td>
</tr>
<tr>
<td>1945–64</td>
<td>853</td>
<td>17.6</td>
<td>17.0</td>
<td>35.8</td>
</tr>
<tr>
<td>1965–80</td>
<td>624</td>
<td>19.1</td>
<td>18.4</td>
<td>17.6</td>
</tr>
<tr>
<td>Post 1980</td>
<td>116</td>
<td>19.5</td>
<td>18.7</td>
<td>14.7</td>
</tr>
</tbody>
</table>
The direct health impacts of living in a cold home can be divided into higher risk of mortality and increased morbidity rates. There is a longstanding body of evidence describing the relationship between higher mortality rates in winter and cold temperatures (27) as well as higher morbidity rates (28). Fuel poverty itself is also detrimental to health, especially mental health, through the financial stress that it causes to households.

5.1 Mortality: Excess Winter Deaths

The graph below shows the levels of excess winter mortality over the past ten years. In 2009/2010 there were an estimated 25,400 excess winter deaths. Although this represents a 30% decrease from the previous year due to low levels of influenza (21), the level remains persistently high when compared to other European countries (see Table 5).

The Office for National Statistics calculates excess winter deaths as the difference between the number of deaths in December – March and the average of deaths in the preceding August – November and the following April – July. If a two month period is taken instead of the four months, the peak of excess winter deaths is consistently more than 40% higher than the summer trough (23).

Each centigrade degree reduction below 18°C in temperature in the UK corresponds with an extra 3500 deaths (29).

We could prevent many of the yearly excess winter deaths – 35,000 in 2008/09 – through warmer housing...

[Public Health White Paper, 2010]

Figure 2 Excess winter deaths 1999–2010

Source: ONS(18)
There are many factors which play a part in excess winter deaths: increases in deaths from respiratory and circulatory diseases cause most of the excess winter mortality, influenza is a contributing factor rather than a main cause of death (38). Cold weather, and in particular cold homes, is believed to be a main factor in causing the winter increase of respiratory and circulatory diseases (30).

It has been noted by researchers that EWDs do not usually relate to socio-economic-deprivation (32–35). This is because socio-economic deprivation indices do not include an energy efficiency variable and although deprivation and fuel poverty are related, they are not the same – the lack of a significant relationship between deprivation and excess winter mortality suggests that in the UK those who are deprived often live in social housing, which is, on average, more energy efficient.

Wilkinson and associates (23) analysed 80,331 deaths from cardiovascular disease in England, between 1986–96, linked by postcode of residence to data from the 1991 English House Condition Survey. Deaths from cardiovascular disease were 22.9% higher in winter months than the average for the rest of the year. There was a statistically significant excess winter mortality seen with the age of the property (28.8% in properties built before 1850 compared to 15% in properties built after 1980) and with property cavity wall ratings, where a gradient can be seen with SAP rating.

Further, there was a strong association between excess winter deaths and lower living room temperatures, with residents of the 25% coldest homes having around 20% greater risk than those in the warmest. ‘The findings provide strong, although not conclusive, evidence that winter mortality and cold-related mortality are linked to sub-optimal home heating’ (23).

Circulatory diseases are believed to cause around 40% of excess winter deaths, while respiratory diseases are responsible for about a third (31). Deaths directly attributed to influenza or hypothermia represent a small proportion of excess winter mortality (32). While there is a clear link between marked winter mortality peaks and the incidence of influenza, cold housing still plays a role in the development of health complications from influenza, and there is still excess winter mortality in years when influenza incidence is at a low level. For example, in Scotland in 2000/2001 there were an estimated 1500 to 3000 EWDs while the flu rates were lower than 150 per 100,000 (32).

The elderly are subject to the greatest increase in deaths in winter, with 20,260 more deaths in the UK among those aged over 75 years during the winter of 2005/06 compared with levels in the non-winter months. Older people are more likely to be vulnerable to cold weather, partly because they are more likely to have existing medical conditions. Further, their temperature control is weaker because of less subcutaneous fat, making them vulnerable to hypothermia (29). In older people, a 1°C lowering of living room temperature is associated with a rise of 1.3 mmHg blood pressure, due to cold extremities and lowered core body temperature (33). Older people are more likely to be fuel poor, as they are likely to spend longer in their homes than other people and therefore require their houses to be heated for longer periods (34).

Other groups are also vulnerable, including children and people with long term illness (30). In addition, many of the most vulnerable members of society spend longer in the home than most, and therefore require the heating on all day, and not just in the morning and evening (31).

“Diseases of the circulation – including heart attack and stroke – account for around 40% of excess winter deaths. Around one third of excess winter deaths are due to respiratory illness…” (Chief Medical Officer Report, 2009)

Table 4: Excess winter deaths by age of property (23)

<table>
<thead>
<tr>
<th>Property age (n=80,331)</th>
<th>Winter deaths</th>
<th>% excess in winter</th>
<th>Risk (95% confidence interval) relative to baseline group</th>
<th>P-value for trend*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pret 1850</td>
<td>703</td>
<td>28.2</td>
<td>1.0</td>
<td>0.00</td>
</tr>
<tr>
<td>1850–99</td>
<td>5,469</td>
<td>25.6</td>
<td>0.98 (0.88–1.09)</td>
<td>0.00</td>
</tr>
<tr>
<td>1900–18</td>
<td>3,063</td>
<td>24.1</td>
<td>0.97 (0.87–1.08)</td>
<td>0.00</td>
</tr>
<tr>
<td>1919–44</td>
<td>6,978</td>
<td>26.0</td>
<td>0.98 (0.89–1.09)</td>
<td>0.00</td>
</tr>
<tr>
<td>1945–64</td>
<td>6,709</td>
<td>23.9</td>
<td>0.97 (0.87–1.07)</td>
<td>0.00</td>
</tr>
<tr>
<td>1965–80</td>
<td>6,612</td>
<td>17.1</td>
<td>0.91 (0.82–1.01)</td>
<td>0.00</td>
</tr>
<tr>
<td>Post 1980</td>
<td>935</td>
<td>15.0</td>
<td>0.90 (0.79–1.02)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* The P-values test for a trend of increasing or decreasing risk across ordered groups (for example, increasing age). However, in the case of region, there is no logical order and the P-values test whether the winter excess varies between regions.

Table 5: Coefficient of seasonal variation in mortality (CSVM) in EU–14 (mean, 1988–97) (35)

<table>
<thead>
<tr>
<th>Country</th>
<th>CSVM 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>0.10 0.07 to 0.13</td>
</tr>
<tr>
<td>Germany</td>
<td>0.11 0.09 to 0.13</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.11 0.09 to 0.13</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.12 0.10 to 0.14</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0.12 0.08 to 0.16</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.13 0.09 to 0.17</td>
</tr>
<tr>
<td>France</td>
<td>0.13 0.11 to 0.15</td>
</tr>
<tr>
<td>Austria</td>
<td>0.14 0.12 to 0.16</td>
</tr>
<tr>
<td>Italy</td>
<td>0.16 0.14 to 0.18</td>
</tr>
<tr>
<td>Greece</td>
<td>0.18 0.15 to 0.21</td>
</tr>
<tr>
<td>UK</td>
<td>0.20 0.16 to 0.24</td>
</tr>
<tr>
<td>Spain</td>
<td>0.21 0.19 to 0.23</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.21 0.18 to 0.24</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.28 0.25 to 0.31</td>
</tr>
<tr>
<td>Mean</td>
<td>0.16 0.14 to 0.18</td>
</tr>
</tbody>
</table>

International comparisons

Heat carried away a large number of excess winter deaths, describing variations in excess mortality in southern, western and northern European countries (35). Table 5 below shows the different levels of excess mortality rates in the countries that have not necessar-
demonstrating a strong association between excess winter mortality and levels of domestic heating or protection from low outside temperatures (36).

Summary

— Countries which have more energy efficient housing have lower EWDs.
— There is a relationship between EWDs and low SAP rating/low indoor temperature.
— EWDs are almost three times higher in the coldest quarter of housing than in the warmest.
— 21.5% of all EWDs are attributable to the coldest quarter of housing, because of it being colder than other housing.
— Around 40% of EWDs are attributable to cardiovascular diseases.
— Around 33% of EWDs are attributable to respiratory diseases.

Table 6 Coefficient of seasonal variation in mortality and domestic thermal efficiency in EU–13 (35)

<table>
<thead>
<tr>
<th>Country</th>
<th>CSVM</th>
<th>Cavity wall insulation (% houses)</th>
<th>Roof insulation (% houses)</th>
<th>Floor insulation (% houses)</th>
<th>Double glazing (% house)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>0.10</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Germany</td>
<td>0.13</td>
<td>24</td>
<td>42</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.11</td>
<td>47</td>
<td>53</td>
<td>27</td>
<td>78</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.12</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Norway</td>
<td>0.12</td>
<td>85</td>
<td>97</td>
<td>88</td>
<td>98</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.12</td>
<td>65</td>
<td>76</td>
<td>63</td>
<td>91</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.13</td>
<td>42</td>
<td>43</td>
<td>12</td>
<td>62</td>
</tr>
<tr>
<td>France</td>
<td>0.13</td>
<td>68</td>
<td>71</td>
<td>24</td>
<td>52</td>
</tr>
<tr>
<td>Austria</td>
<td>0.14</td>
<td>26</td>
<td>37</td>
<td>11</td>
<td>53</td>
</tr>
<tr>
<td>Greece</td>
<td>0.18</td>
<td>12</td>
<td>16</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>UK</td>
<td>0.18</td>
<td>25</td>
<td>90</td>
<td>4</td>
<td>61</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.21</td>
<td>92</td>
<td>72</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>0.28</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

5.2 Morbidity: Health Conditions

The main health conditions associated with cold housing are circulatory diseases, respiratory problems and mental ill-health. Other conditions influenced or exacerbated by cold housing include the common flu and cold, as well as arthritis and rheumatism. The level to which such conditions rise during the winter months and their relationship with cold housing is harder to measure than for mortality, which is systematically recorded. The literature on excess winter morbidity is reviewed below.

Low indoor temperatures have been shown to be associated with poor health (41), excess winter mortality (37), as well as a variety of social and economic problems for residents (38). Trends such as the ageing population, rising unemployment, and an increase in numbers of people working from home will make the need for a warm home even more crucial (39). There are recommendations from the World Health Organization (WHO) to keep indoor temperatures above 18 degrees, but there are also some critical thresholds around acceptable temperatures in relation to health (40). For instance, the longer an individual is exposed to cold temperatures, the greater the risk of harm (41). The impact is exacerbated for vulnerable individuals and the colder the temperature the greater the risk of harm.

— Temperatures that are lower than 16 degrees appear to impair respiratory functions.
— Temperatures below 6 degrees place strain on the cardiovascular system.
— Temperatures below 6 degrees place people at risk of hypothermia.

Liddell (42) has reviewed the main large scale studies of the health impacts of fuel poverty carried out over the past 10 years. These were the Warm Front Evaluation, the Scottish Central Heating and Health Study (HHHS), and Housing, Heating and Health Study (HHHS), a NATCEN longitudinal study of housing conditions and their association with English children’s well-being, and the US Children’s Sentinel Nutritional Assessment Programme (C-SNAP).

Liddell concludes that, despite the risks to physical health from cold homes, improvements to energy efficiency and the reduction of fuel poverty achieved by some of the programmes had a modest measurable impact in improving the physical health of adults. However, the potential for measuring such effects is hampered by methodological limitations in the evaluations, including the sample sizes of the studies. Measuring the health impact of improvements in energy efficiency and reduced fuel poverty is particularly difficult for children who may have long term health conditions related to cold housing which are the result of lengthy exposure to cold houses.

Exposure to cold housing is harder to measure than for mortality, as the ageing population, rising unemployment, and an increase in numbers of people working from home will make the need for a warm home even more crucial (39). There are recommendations from the World Health Organization (WHO) to keep indoor temperatures above 18 degrees, but there are also some critical thresholds around acceptable temperatures in relation to health (40). For instance, the longer an individual is exposed to cold temperatures, the greater the risk of harm (41). The impact is exacerbated for vulnerable individuals and the colder the temperature the greater the risk of harm.

— Temperatures that are lower than 16 degrees appear to impair respiratory functions.
— Temperatures below 6 degrees place strain on the cardiovascular system.
— Temperatures below 6 degrees place people at risk of hypothermia.

Liddell (42) has reviewed the main large scale studies of the health impacts of fuel poverty carried out over the past 10 years. These were the Warm Front Evaluation, the Scottish Central Heating and Health Study (HHHS), and Housing, Heating and Health Study (HHHS), a NATCEN longitudinal study of housing conditions and their association with English children’s well-being, and the US Children’s Sentinel Nutritional Assessment Programme (C-SNAP).

Liddell concludes that, despite the risks to physical health from cold homes, improvements to energy efficiency and the reduction of fuel poverty achieved by some of the programmes had a modest measurable impact in improving the physical health of adults. However, the potential for measuring such effects is hampered by methodological limitations in the evaluations, including the sample sizes of the studies. Measuring the health impact of improvements in energy efficiency and reduced fuel poverty is particularly difficult for adults who may have long term health conditions related to cold housing which are the result of lengthy exposure to cold houses.

The impacts are easier to measure in children, who are more susceptible to changes, and for the elderly who are at higher risk of mortality or developing life-threatening conditions. The main findings across the studies are summarised in the points below, while some of the detail is discussed further in this report:

— Significant effects on the physical health of the young were evident, especially in terms of infants’ weight gain, hospital admission rates, and carer-rated developmental status, as well as self-reported reduction in the severity and frequency of children’s asthmatic symptoms.
— Mental health impacts emerged as extremely strong amongst both adults and adolescents.
— After improvements have been made to homes, health improvements for adults were measurable, although modest, and mostly related to perceptions of physical well-being and self-assessed general health.
— Large-scale studies suggest that impacts of cold temperatures as a function of poor housing on mortality and morbidity are almost certain across the whole population.

Circulatory diseases

Much of excess winter mortality can be attributed to cold temperatures, and a significant proportion can be attributed to cold housing. Excess winter deaths that are attributable to circulatory diseases are estimated to be between 40% (43) and 50% (44). Cold affects circulatory health because temperatures below 12 degrees Celsius result in raised blood pressure (31). Cold affects circulatory health because temperatures below 12 degrees Celsius result in raised blood pressure. Increases in blood pressure, along with increased blood viscosity, increases the risk of strokes and heart attacks (31).

Barnett et al (45) studied people aged 35-64 in 21 countries who had had a coronary event between 1980-95 and found that the number of heart attacks in cold periods (26.3% events were in 25% of periods). More significantly, fatal events (compared with non-fatal events) were more common in cold than warm periods. The researchers also found that women were 1.07 times more likely to suffer a coronary event in a cold period than expected.
Despite evidence of unusually hot summers causing mortality in the UK, these excess summer deaths rates are relatively low in comparison to excess winter deaths. Excess summer mortality sometimes receives considerable media attention as it did during the heatwave in August 2003. Excess summer mortality occurs to a lesser, though still notable, extent in England and Wales. Circulatory morbidity and mortality are higher in the winter than even the warmest of UK summers. The increase in the number of heart attacks during the winter months and an analysis of excess non-fatal heart attacks and strokes in relationship to cold housing is an obvious avenue of research to explore the causes of increased cardio-vascular morbidity during the winter months.

Respiratory problems

Cold air RTI consultations in all 16 locations. A slightly weaker relationship was observed in the case of URTI consultations. Importantly, a large scale study which looked at residents aged over 65 in the London Borough of Newham, calculated ‘excess winter morbidity’ (EWM) based on emergency hospital episodes for all respiratory diagnosis codes, and ranked this against a Fuel Poverty Index (FPI) which included factors of energy efficient housing, low income, householder age and under-occupation. The FPI was shown to be a predictor of EWM, indicating supporting evidence of a relationship between energy-efficient housing and winter respiratory disease among older people (28).

A study carried out by Shelley in 2006 suggested that children in bad housing conditions, including cold homes, are more likely to have mental health problems, such as anxiety and depression, to contract meningitis, have respiratory problems, experience long-term ill health and disability, experience slow physical growth and have delayed cognitive development, particularly concerning given 2009 estimates that 1.1 million children in the UK are affected by asthma (19). Children persistently living in accommodation which is too cold, damp or draughty are more prone to coughing and wheezing – symptoms of asthma and other respiratory conditions – than children in dry homes (55) (Peel et al 1998, cited in 19). Children persistently living in accommodation which is too cold, damp or draughty are more prone to coughing and wheezing – symptoms of asthma and other respiratory conditions – than children in dry homes (55) (Peel et al 1998, cited in 19).

A study by Gilchrist (53) focused on measuring the joint effects of fuel poverty and ill health in the Northern Ireland Study (60). These adverse outcomes reflect both the direct impact of the housing and the associated material deprivation.

The Warm Front and the Scottish CHP evaluation assessed mental health impacts on adults and both found that effects were prominent in the mental health domain, in particular for borderline anxiety and depression. In the short and medium term, receiving a Warm Front package is associated with significantly better mental health. The study showed that as average bedroom temperature rose, the chances of occupants avoiding depression increased. Residents with bedroom temperatures at 21°C are 50-60% less likely to suffer depressive symptoms than those with temperatures of 15°C (61).

Even greater impacts were found in the New Zealand HEHS study. This could partly be accounted for by the fact that all households were at clinical risk in the New Zealand study. “It is possible that the joint effects of fuel poverty and ill health (especially if one is perceived to exacerbate the other) generate a significantly greater toll on mental health than might be evident in a more diverse range of healthier households.” (42)

The NATCEN study found that lack of affordable warmth was associated with multiple mental health risk for young people, meaning that they are more likely to suffer from stress than the less distressed. In 2009, 28% of respondents to the New Zealand HEHS study were found to have experienced more than one of the following physical health symptoms: 28% were classed as having such risk, compared to 4% of young people who had always lived in warm homes. A significant proportion of children living in cold homes felt unhappy in their family – 10% as opposed to 2% of the group living in warm homes. Complementary studies point to the fact that young people living in cold homes try to find respite and privacy in other venues outside home, where they are more exposed to mental health risks (62,63).

A study carried out by Shelley in 2006 suggested that children in bad housing conditions, including cold homes, are more likely to have mental health problems, such as anxiety and depression, to contract meningitis, have respiratory problems, experience long-term ill health and disability, experience slow physical growth and have delayed cognitive development, particularly concerning given 2009 estimates that 1.1 million children in the UK are affected by asthma (19). Children persistently living in accommodation which is too cold, damp or draughty are more prone to coughing and wheezing – symptoms of asthma and other respiratory conditions – than children in dry homes (55) (Peel et al 1998, cited in 19).

A study by Gilchrist (53) focused on measuring the joint effects of fuel poverty and ill health in the Northern Ireland Study (60). These adverse outcomes reflect both the direct impact of the housing and the associated material deprivation.

The Warm Front and the Scottish CHP evaluation assessed mental health impacts on adults and both found that effects were prominent in the mental health domain, in particular for borderline anxiety and depression. In the short and medium term, receiving a Warm Front package is associated with significantly better mental health. The study showed that as average bedroom temperature rose, the chances of occupants avoiding depression increased. Residents with bedroom temperatures at 21°C are 50-60% less likely to suffer depressive symptoms than those with temperatures of 15°C (61).

Even greater impacts were found in the New Zealand HEHS study. This could partly be accounted for by the fact that all households were at clinical risk in the New Zealand study. “It is possible that the joint effects of fuel poverty and ill health (especially if one is perceived to exacerbate the other) generate a significantly greater toll on mental health than might be evident in a more diverse range of healthier households.” (42)
health and well-being, increased levels of comfort in the home and a reduction in the use of health services. Key findings include a reduction in the occurrence of condensation, a reduction in the numbers of people reporting arthritis/rheumatism, a reduction in the use of health services, an increase in temperature satisfaction for those who had a new heating system installed, and for those who did not, there was an increase in benefit uptake (70).

Cold conditions can also increase the risk of minor illnesses. The common cold replicates faster in a cold nose whereas the immune system becomes more sluggish in colder temperatures, meaning a common cold is more likely to develop. This can have more severe consequences for patients with existing conditions, as it may lead to a chest infection in patients with chronic obstructive pulmonary disease (COPD) (44).

Summary

— There is a strong relationship between cold temperatures, cardio-vascular and respiratory diseases, which has been associated with fuel poverty and cold housing.

— Children living in cold homes are more than twice as likely to suffer from a variety of respiratory problems than children living in warm homes.

— Mental health is negatively affected by fuel poverty and cold housing for any age group.

— More than 1 in 4 adolescents living in cold housing are at risk of multiple mental health problems.

— Cold housing increases the level of minor illnesses such as colds and flu and exacerbates existing conditions such as arthritis and rheumatism.

6 Indirect health impacts of living in a cold home

Evans (65) carried out a study of wider housing quality and children’s health and well-being. Housing quality was based on an observer-rated standardised index which included indoor temperature, as well as other variables (structural quality, privacy, hazards, cleanliness/clutter, and children’s resources). The study found that independently of household income, children residing in poorer quality housing have more psychological symptoms and less task persistence than their counterparts living in better quality housing. There were no gender differences. The research showed not only that housing quality is associated with psychological health in children, but that it may also affect certain aspects of children’s motivation. The motivational data suggests that chronic exposure to poor housing conditions may lead to greater helplessness.

Significant improvements in health-related quality of life were found in a randomised controlled trial of home insulation, which concluded that targeting home improvements at low-income households significantly improved social functioning and both physical and emotional well-being (including respiratory symptoms) (41) cited in (66).

The level of energy efficiency affects people with low incomes more severely because it affects life chances and how they spend disposable income on other basic items such as food and clothing (14). Poor families will face the choice to “heat or eat”: either less money can be spent on basics such as a sufficient, healthy diet (with obvious health impacts such as obesity or malnutrition), or less can be spent on heating their homes to a reasonable temperature. Warmer homes could bring potential physical health benefits from improvements in cooking and nutrition. Interviews with participating households as part of the Warm Front health impact evaluation found that 10% of households felt more and better quality food could be purchased because of cost savings, and 20% reported improved cooking since previously cold kitchens were now comfortable to work in (58).

Bhattacharya and associates (67) looked at the impact of cold weather periods on family budgets and nutritional outcomes in poor American families. Their results suggested that these families tended to decrease spending on food by a similar amount to the extra spent on fuel during cold spells, and both children and adults reduced their caloric intake by about 200 calories in winter months. Rich families, on the other hand, increased spending on food, demonstrating that deprived families are more likely to suffer from some of the indirect impacts of cold weather.

Cold damp homes increase the risk of arthritic symptoms. This impacts on strength and dexterity, which both decrease as temperatures drop, increasing the risk of non-intentional injuries. A cold house increases the risk of falls in the elderly (31). Domestic accidents, including fatalities, are more common in cold homes in winter. This can result in periods of prolonged immobility, making it even more difficult to keep warm (44).

Social isolation among older people is exacerbated by living in a cold home. Costly fuel bills prevent them from going out, they fear returning already feeling cold, to a cold home, or they are reluctant to invite friends into a cold house (44). Older people who are unable to keep their homes warm, who have a health condition exacerbated by the cold or have sustained injuries due to the cold, may need increased care or need to go into residential care, increasing the financial burden on the country (44).

Interviewer: You’re cold in your own home, what effect has that on your life in general?

Respondent: Terrible. Sometimes we go to bed at 7 o’clock, and all our regular visitors know it’s pointless coming after that time because they know where we are. We find it easier to go upstairs to sit underneath the blankets to keep warm. (Evelyn, middle-aged couple) [Harrington 2005]

Some respondents to a survey carried out after the Warm Front programme tended to think of cold indoors as exacerbating health problems rather than causing them. This may illustrate lay beliefs rather than the absence of causality, but it also shows a clear perception on the part of the respondents that cold housing had an impact on their well-being. In particular, respondents identified positive effects of warmer homes on social relationships and mental health (68).
6.1 Social benefits of improved housing

The main benefits arising from improving the thermal efficiency of the existing housing stock are the beneficial effects on the health of residents and the reduced carbon emissions from heating needs. However, there are other benefits to warmer homes and to investing in thermal efficiency:

- A study found that an increased duration of living in inadequately heated accommodation is significantly associated with having multiple negative outcomes across the range of the Every Child Matters outcomes framework. For example, 67% of children who persistently lived in inadequately heated accommodation had not had a holiday in the past year compared to 50% who lived in inadequately heated accommodation on a short term basis, they were more likely to feel safe and less likely to fail to attend school.

Further, an increased duration of living in inadequately heated accommodation is significantly associated with having no quiet place at home to do homework. This may be because the family can afford to only part heat their home and heating is focused on the most used (and therefore noisiest) rooms. This can affect a child’s educational attainment and therefore work opportunities in later life.

- Educational and work factors are particularly important determinants of long-term health: cold housing, its impact on family life and early years can heavily weight on other spheres of life, which affect long-term health outcomes.

The investment in energy efficiency measures can also help with neighbourhood renewal by creating more local jobs and improving local economies. Area based approaches such as the Community Energy Savings Programme currently being trialled throughout the UK could help to deliver this. Such investment can bring vitality to the green economy, work opportunities in the building industry and opportunities for up-skilling the building workforce.

7. Conclusions

Cold housing and fuel poverty not only have direct and immediate impacts on health, but also indirect impacts and a wider effect on well-being and life opportunities, as well as on climate change. The evidence reviewed in this paper shows the dramatic impact that cold housing has on the population in terms of cardio-vascular and respiratory morbidity and on the elderly in terms of winter mortality. It also highlights the stark effect that fuel poverty has on mental health across many different groups, while also having an impact on children and young people’s well-being and opportunities.

Addressing energy inefficient housing and bringing all homes up to a minimum standard of thermal efficiency would have the strongest positive impact on the poorest households, even though households from a variety of socio-economic backgrounds are likely to be residents of such properties.

A medium scenario model for fuel price increases developed in 2008 predicted fuel poverty in England to jump to four million by 2016 if improvements to the energy performance of the housing stock, and growth in the incomes of low-income households, were maintained at current rates. Fuel poverty has now already risen to this level because the fuel price increase was much higher than the model predicted. The current energy efficiency of the existing housing stock is unable to mitigate such high increases. However, it is unlikely that anyone living in a dwelling built to current and near-future standards will be at any risk of being in fuel poverty.

The Government should aim to make improving energy efficiency standards a priority: any step forward in achieving certain minimum standards in the existing housing stock will reduce the risk of fuel poverty for current and future households and bring associated health benefits.

The Energy Savings Trust estimate that the overall total cost of improving an E band all F and G homes would be £12.5 billion. Other estimates for upgrading all fuel poor homes to a SAP 81 range from £21 to £28 for England or £49 to £64 billion for the whole of the UK. If all homes in England were brought up to an EPC B band, 9.4Mt CO2 would be saved, just under 2% of the UK’s net CO2 emissions. Major energy efficiency retrofit programmes that would bring homes to a SAP of 81 have been estimated to reduce fuel bills of the fuel poor by half, thus removing 83% of fuel poor households from fuel poverty, as well as reducing CO2 emissions related to domestic energy requirements by over 50%.

Cold housing and fuel poverty are associated with the following:

- An increased duration of living in inadequately heated accommodation.
- A study found that an increased duration of living in inadequately heated accommodation is significantly associated with having multiple negative outcomes across the range of the Every Child Matters outcomes framework. For example, 67% of children who persistently lived in inadequately heated accommodation had not had a holiday in the past year compared to 50% who lived in inadequately heated accommodation on a short term basis, they were more likely to feel safe and less likely to fail to attend school.

Further, an increased duration of living in inadequately heated accommodation is significantly associated with having no quiet place at home to do homework. This may be because the family can afford to only part heat their home and heating is focused on the most used (and therefore noisiest) rooms. This can affect a child’s educational attainment and therefore work opportunities in later life.

- Educational and work factors are particularly important determinants of long-term health: cold housing, its impact on family life and early years can heavily weight on other spheres of life, which affect long-term health outcomes.

The investment in energy efficiency measures can also help with neighbourhood renewal by creating more local jobs and improving local economies. Area based approaches such as the Community Energy Savings Programme currently being trialled throughout the UK could help to deliver this. Such investment can bring vitality to the green economy, work opportunities in the building industry and opportunities for up-skilling the building workforce.

Summary

- Cold housing negatively affects children’s educational attainment, emotional well-being and resilience.

- Fuel poverty negatively affects dietary opportunities and choices.

- Cold housing negatively affects dexterity and increases the risk of accidents and injuries in the home.

- Investing in the energy efficiency of housing can help stimulate the labour market and economy, as well as creating opportunities for up-skilling the construction workforce.

Conclusions

The annual cost to the NHS of treating winter-related disease due to cold private housing is £859 million. This does not include additional spending by social services, or economic losses through missed work. The total costs to the NHS and the country are unknowable but a recent study showed that investing £1 in keeping homes warm saved the NHS £42 pence in health costs...

[NHS 42 pence in health costs...]

[Chief Medical Officer Report, 2009]
record of health improvement, ahead of any sig-
nificant detail on the future level and arrangement
of intervention is also needed on two other lev-
els: deprived areas should be targeted through
programmes such as the Community Energy
Savings Programme, and poor quality housing
should be a priority in the reduction of a renewed
energy-focused Decent Homes Standard, as suggested by the Communities
and Local Government Committee (75). Low-income households could also be aided
by further increasing targeting for the social hous-
ing sector, as suggested by the Home Energy
Conservation Act.

4 More appropriate legislation must be developed
on the side of tenants in private rented accom-
modation who are put off seeking help to make
energy efficiency improvements to their homes.
The Government should develop targets for
upgrading the energy efficiency of the exist-
ing stock, including some form of minimum energy efficiency standard for the private rental
sector, which is supported by the Fuel Poverty
Advisory Group (20). This could be facilitated
through a statutory power for landlords held
by local authorities, which could help identify
non-decent homes, at risk households and imple-
mentation of regulation. This has the potential of
raising 150,000 households from fuel poverty if
privately rented F and G rented properties were
brought up to a band E (72).

5 National Indicators are effective levers for local
action and we recommend that the National
Indicator on fuel poverty should be maintained
as a mandatory and a new National Indicator
of housing quality, focused on energy efficiency,
and specifically related to the private sector
should be made available to local authorities.
Fuel poverty has been included as an indicator
in the proposed public health outcomes frame-
work (77), while at the same time much of the
responsibility from public health will move to
local authorities: it is fundamental that data on
fuel poverty at the local level continues to be col-
lected if the this indicator is to be implemented and
monitored.

6 Energy standards and guidelines should be
coupled with quality standards for adequate
ventilation when sealing homes. This is par-
ticularly necessary when ‘quick fixes’ such as
double-glazing and draught proofing are carried
out to properties. In major refurbishment and
gerenovation projects consideration should be
given to using solar heat gain, while at the same
time avoiding summer overheating through

Ensuring effectiveness of interventions
Some studies (74,79) have shown that, following
interventions aimed at improving thermal efficiency,
trade-offs have taken place between energy use and
thermal comfort. In some cases, the benefits of
improved fuel efficiency were taken in the form of
thermal comfort. In some cases, the benefits of
trade-offs have taken place between energy use and
thermal comfort. In some cases, the benefits of
improved fuel efficiency were taken in the form of
thermal comfort. In some cases, the benefits of
improved fuel efficiency were taken in the form of
thermal comfort. In some cases, the benefits of
improved fuel efficiency were taken in the form of
thermal comfort. In some cases, the benefits of
improved fuel efficiency were taken in the form of
thermal comfort.

A study showed that at pre-existing temperatures
of 16.5°C, about 30% of the benefit of an energy
efficiency improvement would be taken as a tempera-
ture increase and the rest as an energy saving. This
means that the great majority of interventions bring
a multiple health and environmental gain. Where
pre-existing temperatures were as low as 14°C, such
as in very poor standard homes or very low income
households, a 50% energy saving is achieved and
the rest is taken as a temperature increase. In cir-
cumstances where the house is already maintained
at 20°C on average, energy efficiency improvements
will achieve a 100% energy saving (74).

This means that once the trade-off issues for
at-risk households are addressed, energy efficiency
interventions always bring multiple health and envi-
ronmental gains.

7.1 Policy Recommendations
The studies reviewed in the sections above have
shown not only that cold housing and fuel poverty
have an impact on physical and mental health, but
also that policies aimed at improving the thermal
efficiency of homes and reducing fuel poverty can
reduce mortality and morbidity. In this section we
propose some policy development and high-
light interventions that are likely to have the greatest
impact in improving cold homes and reducing fuel
poverty.

The Energy Saving Trust (EST) has carried out
an analysis of the measures needed to improve all
houses to SAP39, thereby getting rid of all F and G
homes (7%) in 2008. The measures needed are
loft installation, full cavity wall insulation, a
moderately condensing boiler and double glazing.
These homes will cost less than £3000 to raise to a
band E. However, there are a small proportion
of hard to make decent homes which will cost more
than £5000 to bring to an E band. These should
not be ignored when considering policy assistance
measures.

Improving the energy efficiency of housing has to
occur in all communities, across the social gradient
and not just where it might be ‘easy’. At times the
households in most urgent need are those who are
least likely to support such tenants in the
private rental sector, or who live in homes that
are hardest to upgrade such as older rural housing.

1 It is vital that programmes and funding remain
in place to reduce fuel poverty and improve
the health of those on low incomes through improve-
ments to the energy efficiency of homes at no cost
to vulnerable consumers. Such funding should be
provided to low income households through a
renewed Warm Front Scheme and through the
proposed Energy Company Obligation (ECO),
which is currently planned to pass the costs on
to consumers, regardless of income, though not
upfront and with potential longer-term savings.
This scheme needs to be adequately financed and
its details should ensure that low-income
households and vulnerable groups should be exempt
from meeting costs.

2 The Warm Front programme, which provided
a package of insulation and heating improvements
to qualifying households, has been shown to have a
positive impact on mental health, alleviating
respiratory problems in children and reducing
deaths among older people (61). In the context
of increasing energy prices and an ageing popu-
lation, as well as the need to mitigate climate
change and adapt to more extreme weather
events, it is recommended that the Warm Front
Scheme is not only renewed to at least its pre-
CSR levels, but its eligibility criteria widened or
at least maintained, rather than restricted as is
currently proposed.

3 Funding mechanisms must be in place to
enable households to improve their homes.
However, beyond supporting low
income households in any area, more intensity
of intervention is also needed on two other lev-
els: deprived areas should be targeted through
programmes such as the Community Energy
Savings Programme, and poor quality housing
should be a priority in the reduction of a renewed
energy-focused Decent Homes Standard, as suggested by the Communities
and Local Government Committee (75).

7: CONCLUSIONS

THE HEALTH IMPACTS OF COLD HOMES AND FUEL POVERTY
34
35
Ensuring that all F and G rated homes are upgraded to an E standard by 2016 is a basic step towards achieving carbon emission reduction targets and ensuring that the existing housing stock is ready for upgrades to nearly zero-energy standards when undergoing further renovations as suggested by the EU policy directives on the energy performance of buildings (4). It is therefore recommended that, whenever viable, homes are upgraded to as high a standard as possible. In a few cases where some of the worst homes are involved and where it is cost-efficient, considerations should be given to demolition and rebuilding to current standards as this may avoid further expenditure in the future. It is often cost effective to deliver measures as packages, bringing them up to a band D or C, for example internal solid wall insulation and window replacements are usually most cost effectively delivered at the same time.

Past Government policies aimed at tackling fuel poverty have not equitably addressed those issues faced by rural communities. There are no policy instruments supporting the financing of double glazing, limited policy measures supporting financing for solid wall insulation and no strong incentive encouraging homeowners in inefficient homes to switch away from electric heating systems (3). It is recommended that policy instruments and incentives to implement the above are included in the Green Deal. There has been a lack of funding to assist off-gas properties, and remote areas suffer higher costs of delivery when it comes to home energy efficiency measures (26). Specific policies and interventions need to be developed to address the energy efficiency of rural homes, in particular FIT and RHI should be adapted to provide further support to low income households in rural homes.

Methodology for developing model and calculating estimate of EWDs attributable to cold housing

The details of the calculations are given below. They are based on a simplistic model for estimating what proportion is attributable to cold housing and make some key assumptions:

1. The difference between the relative risk of death in cold and warm housing was constant over the 4 winter months.
2. The average risk for the non-winter months was halfway between the summer minimum and the average level for the 4 winter months.
3. The population at risk in the 25% of coldest homes comprised a quarter of the general population and had the same age-sex profile.

A similar calculation could be performed for any other time periods if estimates of the risk for cold and warm housing were available for these other time periods. An assumption cannot be made that the difference in risks would be the same for other time periods, as it is not possible to predict how outdoor temperature and flu epidemics would influence this difference in risk.

Calculations

- A = Total EWDs for 1985/6–1995/6 = 368,850
- A1 = Total registered deaths 1986–1996 = 6,251,491

Notes

All estimates are based on the period 1986–1996. Risk factors were taken from Wilkinson et al. 2001. Registered deaths, mortality rates and estimates of EWDs for the period 1986–1996 are all taken or derived from ONS data.
Denoted by * in the text

1 Although the emphasis in the definition is on heating the home, fuel costs in the definition of fuel poverty also include spending on water heating, lights and appliance usage and cooking costs.

2 Defined as those in receipt of one of the principle means tested or disability related benefits.

3 Those in receipt of certain income and disability benefits and those over the age of 70.

4 The CSVM is the proportionate increase in mortality during the winter months (Dec–Mar) in comparison to the average for the other two quarters of the year (Apr–Jul and Aug–Sep).

5 The ‘consensual approach’ is a method to measure poverty by looking at direct measures of living standards as determined by public opinion and identifying the population subject to an enforced lack of such standards.

6 The CSVM is proportionate increase in mortality during the winter months (Dec–Mar) in comparison to the average for the other two quarters of the year (Apr–Jul and Aug–Sep).

7 This index comprised 88 items which were scored between 0 and 2 by trained independent observers according to criteria listed in the index.

8 The definition of ‘learned helplessness’ is used here: a behavioural trait by which humans, following persistent lack of control over their surrounding environment, stop attempting to improve their circumstances, to achieve better results, or to change their own behaviour and environment.

9 This is an indicator framework of children’s health and well-being developed by the Department for Children, Schools and Families in 2008 (http://www.dcsf.gov.uk/childrensplan/downloads/ECM-%20outcomes-%20/framework.pdf).

10 The total UK net CO2 emissions in 2009 were 473.7 Mt (http://www.decc.gov.uk/assets/decc/Statistics/climate_change/1214-stat-rel-uk-ghg-emissions-2009-final.pdf)
References

Denoted by (n) in the text

27. Guy WA (1857) On the annual fluctuations in the number of deaths from various diseases, compared with like fluctuations in crime and in other events within and beyond the control of human will. *Journal of the Statistical Society*, 21, pp. 52–86.

